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Abstract The Haseman–Elston (HE) regression, devel-

oped in the 1970s, remains in common use to detect genetic

linkage between a quantitative trait and a genetic marker.

Although the technique has been improved in a number of

ways, it predicts a high rate of false positive quantitative

trait locus (QTL) because it is based on a single-QTL

model. We have extended the origin HE regression to

multi-QTL HE (MQHE) regression, so that all markers

across the entire genome can be exploited simultaneously.

The parameters have been estimated by the penalized

maximum likelihood method, and several response vari-

ables for phenotypic difference have been compared in

order to optimize the procedure. The method has been

tested by simulation in a pedigree population of maize

inbred lines of known ancestry. These simulations show

that the trait product is the optimal response variable for

phenotypic difference. The false positive rate produced by

the MQHE regression is substantially lower than that

generated by either variance component analysis or the

origin HE regression. The MQHE regression, with the trait

product as the response variable, represents a significant

improvement on existing methods for QTL mapping in a

set of inbred lines (or cultivars) of known ancestry.

Introduction

Most quantitative trait loci (QTL) mapping approaches rely

on segregating populations derived from controlled crosses

(Lander and Botstein 1989; Jansen 1993; Zeng 1993; Li

et al. 2007; Kao et al. 1999; Xu 2003; Wang et al. 2005;

Zhang and Xu 2005; Xu and Jia 2007). Often, however, it

can be impossible, difficult or even unethical to perform

such crosses (Liu 1998). An alternative resource is repre-

sented by natural populations, such as sibling pairs and

breeding pedigrees. Note that the sib-pair-based Haseman–

Elston (HE) regression (Haseman and Elston 1972) is

probably the oldest QTL mapping approach still in common

use. The method is rather limited by its focus on sibling

pairs, but its strength lies in its computational simplicity and

the robustness of the regression framework (Feingold

2001). Therefore, its extension to other populations, and in

particular to a breeding pedigree of crop cultivars (or inbred

lines) of known pedigree (Buckler and Thornsberry 2002;

Flint-Garcia et al. 2003; Zhang et al. 2005; Yu and Buckler

2006; McClurg et al. 2007) is appealing.

The HE regression is based on the single locus model

which includes only one marker at a time, and makes the

critical assumption that each linkage group contains a

maximum of one QTL. This limitation is problematical

(Zhang 2006) since, most seriously, only the effects of one

putative QTL in a given map region can be included in the

model, while all other QTL effects have to be ignored. As a

result, similar to interval mapping, a bias in the estimates

of both the size of the effect and the position of the QTL

occurs whenever more than one QTL is in fact present on a

given linkage group (Zeng 1994). The result of this bias is

an increase in the QTL false positive rate (FPR). To deal

with the multi-QTL problems, composite interval mapping

(Zeng 1993; Jansen 1993; Li et al. 2007) and multiple QTL
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Section on Statistical Genomics, State Key Laboratory of Crop

Genetics and Germplasm Enhancement, College of Agriculture,

Nanjing Agricultural University, 1 Weigang Road,

Nanjing 210095, China

e-mail: soyzhang@njau.edu.cn

123

Theor Appl Genet (2008) 117:683–690

DOI 10.1007/s00122-008-0809-0



mapping (Kao et al. 1999; Xu 2003; Zhang and Xu 2005;

Wang et al. 2005; Xu and Jia 2007) have been successively

proposed. However, these QTL mapping approaches are

typically focused on segregating populations derived from

controlled crosses, rather than on natural populations.

Thus, our current priority was to incorporate multi-QTL

mapping into the HE regression framework in a form

which allows it be applied to analyze the real dataset for

crop cultivars of known pedigree.

As pointed out by Wright (1997), the squared trait dif-

ference (yk
D) in the HE regression discards some useful

information, and so some benefit has been seen in using the

trait values of both members of a sib-pair. In effect, the

squared difference (yk
D) and the trait sum (yk

S) together

contain exactly the same information as the original two

trait values, and critically, these values are independent of

one another. Drigalenko (1998) developed the idea further,

by estimating a regression coefficient using a simple mean

of the estimates from two regressions for response variables

yk
D and yk

S. This average estimate is equivalent to the fitting

of a single regression of the trait product (yk
P) on identity-by-

descent (IBD). These have been exploited as the basis for

the extended HE regression described in this article.

In this article, we show how the origin HE regression

can be extended to the multi- QTL HE (MQHE) regression

which includes all markers across the entire genome. In the

current version of the MQHE regression, the parameters

have been estimated by applying the penalized maximum

likelihood (PML) method, and several response variables

for phenotypic difference have been compared in order to

optimize the procedure. The method we propose has been

contrasted with variance component analysis (VCA, see

Appendix A) and the original HE regression, and used to

detect novel QTL present in a set of inbred lines of known

ancestry.

The new method here was tested by simulation. The

purposes of the simulation were: (1) to select the best

response variable for phenotypic difference; (2) to test

whether the MQHE regression was more efficient than the

HE regression and the VCA method; (3) to investigate the

effect of sample size, the number of alleles, allelic fre-

quency and QTL heritability on the performance of the

MQHE regression, respectively.

Statistical methods

Materials

The number of inbred lines within the maize pedigree

described by Zhang et al. (2005) was 404 (n) (Fig 1). Of

these, n0 (=103) were base (founder) lines or land races,

while n1 (=301) non-founder lines were bred via repeated

self-pollination of a hybrid between two inbred lines. Thus,

each non-founder line represents a recombinant inbred line

with respect to a pair of known parents. The mapping

population consisted of all the non-founder lines.

Genetic model

Let the kth inbred-line pair have trait values (zk,1, zk,2), �z be

the mean value of zk,1 and zk,2 over all sib pairs, the squared

difference be yD
k ¼ ðzk;1 � zk;2Þ2; and the IBD at a locus

between the two inbred lines of each pair be p. Based on

the original HE regression, the expected value of yk
D

conditional on p is described by

EðyD
k jpÞ ¼ b0 þ bp ð1Þ

where b0 is regression intercept, and b is regression slope

(Haseman and Elston 1972). Provided that each marker

locus on the genome can be linked to putative QTL, the

model (1) can be extended to the MQHE regression:

yD
k ¼ b0 þ

Xp

i¼1

bipik þ ek ð2Þ

where bi is the regression coefficient for the ith QTL; p the

number of all markers on the entire genome; pik the IBD of

the kth inbred-line pair at the ith marker locus; ek the

residual error with an assumed N(0, r2) distribution; and

h = (b0, b1,…, bp, r2). The trait sum is given by yS
k ¼

½ðzk;1 � �zÞ þ ðzk;2 � �zÞ�2; the trait product by yP
k ¼ ðzk;1 �

�zÞðzk;2 � �zÞ; and the absolute trait difference by yA
k ¼

zk;1 � zk;2

�� ��: Similarly, the regressions of yk
S, yk

P and yk
A on

the IBD can be established. In what follows, response

variables are denoted by y.

IBD calculation

The method of Zhang et al. (2005) was used to calculate

the IBD in model (2). The method is briefly re-capitulated

in Appendix B.

Parameter estimation

The PML method (Zhang and Xu 2005) was used to esti-

mate the parameters in model (2). The method is briefly re-

capitulated here. In the PML method, the penalized like-

lihood function is the product of likelihood function

LðhjY;MÞ and penalty function P(h, n). The former is

given by

LðhjY;MÞ ¼
Ym

k¼1

uðyk; ak; r
2Þ ð3Þ

where m = n1(n1 - 1)/2, ak ¼ b0 þ
Pp

i¼1 bipik; Y ¼
ðy1; y2; . . .; ymÞT; M represents marker information, and
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u(y; a, r2) is a normal density function with mean a and

variance r2. Similarly, the latter function is:

Pðh; nÞ ¼
Yp

i¼1

uðbi; li; r
2
i Þuðli; 0; r2

i

�
gÞpðr2

i Þ
� �

ð4Þ

where n ¼ l1; . . .; lp; r
2
1; . . .; r2

p

� �
is the vector of

hyperparameters, and g[ 0 is prior sample size for

assessing li. Note that pðr2
i Þ / 1 (Zhang and Xu 2005)

for the response variable yk
P , and pðr2

i Þ� inv� v2ðm; s2
i Þ

with si
2 = 0 (i = 1, 2,…, p) for the other response

variables. So the penalized likelihood function is

wðh; nÞ ¼ LðhjY;MÞPðh; nÞ ð5Þ

Thus, the PML estimates for both model parameters and

hyperparameters are

b0 ¼
1

m

Xm

k¼1

yk �
Xp

i¼1

pikbi

 !
ð6Þ

bi ¼
Xm

k¼1

p2
ik þ r2

�
r2

i

 !�1

�
Xm

k¼1

pik yk � b0 �
Xp

t 6¼i

ptkbt

 !
þ lir

2
�
r2

i

" #
ð7Þ

r2 ¼ 1

m

Xm

k¼1

yk � b0 �
Xp

i¼1

pikbi

 !2

ð8Þ

li ¼ bi=ðgþ 1Þ ð9Þ

r2
i ¼

1
2
ðbi � liÞ

2 þ gl2
i

h i
; for yP

1
mþ4

bi � lið Þ2þgl2
i þ ms2

i

h i
; otherwise

8
><

>:
ð10Þ

The iterative steps for parameter estimation are identical

to those given by Zhang and Xu (2005). The convergence

criterion was
P

hðtþ1Þ
i � hðtÞi

���
���\10�6: In equation (10), the

value of v depends on the response variable when si
2 = 0

(i = 1,…, p). From a wide range of values, we have

determined empirically that m should be set to 6 for yk
A and

7 for yk
D (data not shown).

The slope (bi) depends on the genetic relationship

between individuals (such as full sib, half sib, grandparent–

grandchild, etc.) and the recombination fraction c (Lynch

and Walsh 1998). If c & 0, the slope approximates -2rA
2

for yk
D so that the estimates of bi for yk

D in all the simulation

experiments can be transferred into those of rA
2 , where rA

2

is the additive variance associated with the chromosomal

region of interest. This implies that all types of family

structure can be analyzed together, as long as the marker

Fig. 1 The familial relationships between the 404 maize inbred lines used in the all simulation experiments and derived from Zhang et al. (2005)
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density is sufficient (&5 cM). For this reason, all the

inbred lines depicted in Fig 1 can be analyzed together.

Likelihood ratio test

It is now possible to test the null hypothesis H0:bi = 0 that

there is no QTL at a given location k, by using the likeli-

hood-ratio (LR) test statistic:

LRi ¼ �2½Lðh�ðiþ1ÞÞ � LðhÞ� ð11Þ

where h-(i+1) = {b0, b1,…, bi-1, bi+1,…, bp, r2} is the

vector of parameters which excludes bi. Once the data set

was analyzed by VCA, the critical values of the test sta-

tistic used to declare statistical significance at the 5%

experiment-wise type I error rate were calculated from the

quick method suggested by Piepho (2001). In other cases,

the conventional QTL significance criterion (LOD C 3)

was applied.

Simulation studies

We conducted five simulation experiments to evaluate the

performance of the new method. In all the simulation

experiments, the pedigrees used were the maize pedigree

described in the section of materials. The founders were in

linkage equilibrium so that their genotypes for markers and

QTL could be simulated, while the number of the alleles

was set at 4 except for that in the third simulation experi-

ment and the allelic frequencies were equal except for that

in the fourth simulation experiment. The genotypes of all

non-founder lines could be generated from the genotypes

of their corresponding parents, like the way of simulating

the genotypes of recombinant inbred lines from their two

parents. In the first simulation experiment, 61 equally-

spaced markers were placed on a 600 cM chromosome

segment, and a single QTL with a 0.20 heritability was

located at 200 cM. Although only one QTL was simulated

in most simulation experiments, multiple QTL were con-

sidered simultaneously in the genetic model of equation

(2). The environmental variance was calculated as r2
e ¼

1� h2ð Þr2
g

.
h2: Allelic effects were calculated by relating

the genetic variance of the QTL to the allelic frequencies.

The phenotypic value of each line was the sum of its QTL

genotypic value and the residual error, with an assumed

N(0, re
2) distribution. Each simulation run consisted of 200

replicates. For each QTL simulated, the sample for which

the LOD exceeded the threshold was counted. A QTL

detected within 20 cM of the simulated QTL position was

considered as true. The ratio of the number of such true

QTL to the total number of replicates (200) represented the

empirical power. The FPR was calculated as the ratio of the

number of false QTL to the total number of zero effects in

the genetic model considered. Note that linked false posi-

tives were only counted once.

To demonstrate the first objective of the simulation

experiments, the absolute (squared) trait difference yk
A (yk

D)

and the trait product (sum) yk
P (yk

S) were compared. Each

data set was analyzed four times by the MQHE regression

with each response variable in turn (Table 1). The analysis

showed that the choice of yk
P minimized both FPR and the

standard deviation for the estimates of QTL position, and

almost maximized the QTL detection power. Thus, the trait

product appears to be the optimal response variable in the

new method.

To demonstrate the second objective of the simulation

experiments, each data set in the first simulation experi-

ment was analyzed three times, once by the HE regression,

VCA and the MQHE regression (Table 1). This experiment

demonstrated that the FPR achieved by the MQHE

regression was substantially less than that generated by

either of the two other methods, and that the standard error

Table 1 Comparison of MQHE regression with variance component analysis (VCA) and HE regression (200 replicates)

Method Response variable Power (%) Position (cM) rQ
2 or RC rp

2 or Intercept Re
2 FPR (%)

True value 200.00 1.2500 – 0.8000 –

VCA Phenotypic value 55.5 200.05 (2.35) 2.5377 (2.1250) 0.2567 (0.4601) 0.8351 (0.0054) 44a

HE regression Squared difference 95.0 200.42 (6.96) 1.5892 (0.6440) 12.5491 (1.2605) 0.9960 (0.0032) 14.00

MQHE regression Absolute difference 83.5 199.58 (4.30) -0.5321 (0.2922) 2.8135 (0.1426) 0.9872 (0.0065) 6.13

Squared difference 77.5 199.94 (4.19) 2.2657 (1.1960) 12.4103 (1.2323) 0.9873 (0.0066) 5.05

Trait product 79.0 200.06 (1.78) 1.7290 (1.1229) -0.1435 (0.0689) 0.9938 (0.0075) 1.10

Trait sum 54.0 199.17 (7.12) 3.7089 (2.5878) 11.9978 (1.1522) 0.9872 (0.0067) 7.84

The standard deviations obtained from 200 replicates are given in parentheses

HE Haseman–Elston, MQHE multi-QTL HE, RC regression coefficient, rQ
2 and rp

2 are the variances of the QTL and the polygenes, respectively,

Re
2 the ratio of residual variance to phenotypic variance, FPR false positive rate

a The number of false QTL identified in 200 replicates. The same is true for the later tables
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for QTL position was least for the MQHE regression. Thus,

using the trait product in a MQHE regression represents a

significant improvement on existing methods for QTL

mapping in a set of inbred lines of known ancestry. In the

following simulation experiments, only outcomes using yk
P

are reported.

In the second simulation experiment, we just pruned the

maize pedigree to have the right number of non-founders of

100, 200 and 300, respectively, so the effect of sample size

on the performance of the new method was evaluated. We

simulated a single chromosome of 200 cM long, covered

by 21 evenly spaced markers. A single QTL with a 0.20

heritability was located at 50 cM and overlapped with

marker. As expected, the power and the levels of accuracy

and precision increased as the number of non-founder lines

increased (Table 2).

The third simulation experiment was designed to

investigate the effect of the number of alleles on the per-

formance of the new method by letting the number of the

alleles (both marker and QTL) be set at 2, 4 and 6, while a

single QTL was simulated with a 0.1 heritability and a

50 cM position. The simulated chromosome was the same

as that in the second simulation experiment. The QTL

detection power decreased with the increase of the number

of alleles (Table 3).

In the fourth simulation experiment, the effect of the

allelic frequency on the performance of the new method

was assessed by letting the frequency ratio of the four

alleles for a simulated QTL be set as 1:1:1:1 and 1:1:3:3.

The simulations were performed as described in the third

simulation experiment except that the number of the alleles

for markers and QTL was fixed at 4, and the heritability of

the QTL was fixed at 0.15. The skewed distribution

decreased the statistical power (Table 4).

Finally, we implemented the new method to map mul-

tiple QTL. A 1,000 cM simulated chromosome was

populated with 101 equally spaced markers. Three QTL

were simulated with heritabilities of 0.05, 0.10 and 0.15

Table 2 Effect of the number of non-founder lines on the results of QTL mapping in a pedigree of inbred lines (200 replicates)

Method Sample size Power (%) Position (cM) rQ
2 or RC Intercept Re

2 FPR (%)

HE regression 100 63.0 50.16 (9.76) 2.6980 (0.9527) 13.1167 (2.1007) 0.9923 (0.0041) 7.58

200 90.0 50.22 (7.98) 2.1119 (0.9048) 12.8693 (1.6605) 0.9943 (0.0042) 14.10

300 96.5 50.16 (6.41) 2.0241 (0.9524) 12.7462 (1.3023) 0.9947 (0.0041) 15.50

MQHE regression

trait product)

100 46.0 49.78 (5.34) 2.3442 (1.1935) -0.1907 (0.1376) 0.9935 (0.0085) 1.15

200 73.5 49.93 (3.61) 1.6509 (1.0950) -0.1638 (0.1041) 0.9945 (0.0071) 3.00

300 92.5 50.00 (2.55) 1.6215 (1.1405) -0.1542 (0.0809) 0.9937 (0.0075) 4.68

Table 3 Effect of the number of alleles on the results of QTL mapping in a pedigree of inbred lines (200 replicates)

Method No of alleles Power (%) Position (cM) rQ
2 or RC Intercept Re

2 FPR (%)

HE regression 2 84.5 51.07 (8.66) 1.6141 (0.7271) 11.4057 (1.0512) 0.9972 (0.0025) 16.98

4 79.0 50.32 (8.99) 1.1522 (0.4637) 11.4294 (0.9660) 0.9979 (0.0015) 17.70

6 76.0 51.12 (10.39) 1.0738 (0.4651) 11.3683 (1.0141) 0.9980 (0.0017) 17.20

MQHE regression

(trait product)

2 85.5 49.94 (2.30) 1.0892 (0.6327) -0.0967 (0.0417) 0.9978 (0.0023) 2.43

4 71.0 50.14 (3.15) 0.8429 (0.4650) -0.0912 (0.0540) 0.9982 (0.0022) 2.35

6 63.0 50.24 (2.96) 0.7583 (0.4660) -0.0771 (0.0486) 0.9985 (0.0021) 1.80

Table 4 Effect of allelic distribution on the results of QTL mapping in a pedigree of inbred lines (200 replicates)

Method Allelic

distribution

Power

(%)

Position

(cM)

rQ
2 or RC Intercept Re

2 FPR (%)

True value 50.00 1.2500 –

HE regression 1:1:1:1 89.0 49.10 (7.97) 1.5504 (0.6568) 12.1314 (1.1311) 0.9966 (0.0026) 16.13

1:1:3:3 77.0 49.42 (9.85) 1.2726 (0.5688) 11.4181 (1.0043) 0.9976 (0.0020) 16.63

MQHE regression

(trait product)

1:1:1:1 80.0 50.06 (4.12) 1.1166 (0.8709) -0.1141 (0.0680) 0.9966 (0.0052) 3.33

1:1:3:3 56.5 50.18 (3.27) 1.0201 (0.6667) -0.0776 (0.0590) 0.9979 (0.0037) 1.90
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and locations at marker position 100, 300 and 500 cM,

respectively. So the effect of QTL heritability on the per-

formance of the new method was studied. The general

trend was that the statistical power increased as the heri-

tability increased (Table 5).

Discussion

We used a maize pedigree population of inbred lines (or

cultivars) of known ancestry as an example to demonstrate

the MQHE regression. The method can be directly applied

to sibling pairs and a general pedigree. The new method is

indeed multiple marker analysis that potentially assumes

one QTL residing on each marker position. When marker

density is too high, choosing one marker from the cluster of

markers avoids a high degree of multicollinearity (Zhang

and Xu 2005). When the marker is too sparse, a virtual

marker may be inserted. By making use of Zhang et al.’s

(2005) method, it is not difficult to calculate the values of

the IBD at the virtual marker positions. Once one QTL at

position k is detected, the interval [k - d, k + d], with d

being about 5 cM, can be scanned in order to optimize the

position of the QTL detected according to the idea of

optimizing QTL position in the multiple interval mapping

of Windows QTL Cartographer 2.5 software (Wang et al.

2007). This is an extension to QTL.

The MQHE regression differs from HE regression in

several ways. First, it extends the analysis from a single- to

a multi-QTL model. Second, the response variable used in

the HE regression is replaced by the trait product. The

outcome further confirms Drigalenko’s (1998) improve-

ment for the HE regression. Note that the absolute trait

difference is also valuable. This is because that it gives a

maximum power. Third, as the parameters are estimated by

the PML method rather than by the least squares method, it

is able to estimate the parameters in an over-saturated

genetic model (Zhang and Xu 2005; He and Zhang 2008).

Finally, the new method reduces the FPR at a high cost in

power when the number of non-founders is small. How-

ever, it does almost at the same power level while the

number is large, i.e., more than 300.

The MQHE regression differs from other methods

published to date (Grupe et al. 2001; Crepieux et al. 2005;

Zhang et al. 2005; Yu et al. 2006; Iwata et al. 2007;

McClurg et al. 2007). Along with Iwata et al.’s (2007)

method, it is based on a multi-QTL genetic model, while

the others rely on a single-QTL model. Although Xu and

Jia (2007) also developed an IBD-based multi-QTL

method, this was focused on the analysis of a mapping

population derived from controlled cross. Along with ‘‘in

silico’’ mapping (Grupe et al. 2001), MQHE regression is

based on regression analysis, while Iwata et al.’s (2007) T
a

b
le

5
E

ff
ec

t
o

f
m

u
lt

ip
le

Q
T

L
an

d
v

ar
io

u
s

m
ap

p
in

g
m

et
h

o
d
s

o
n

th
e

re
su

lt
s

o
f

Q
T

L
m

ap
p

in
g

in
a

p
ed

ig
re

e
o

f
in

b
re

d
li

n
es

(2
0

0
re

p
li

ca
te

s)

M
et

h
o

d
Q

T
L

1
(h

2
=

0
.0

5
)

Q
T

L
2

(h
2

=
0

.1
0
)

Q
T

L
3

(h
2

=
0

.1
5

)
In

te
rc

ep
t

R
e
2

F
P

R
(%

)
P

o
w

er
(%

)
P

o
si

ti
o

n
(c

M
)

r Q2
o

r
R

C
P

o
w

er
(%

)
P

o
si

ti
o
n

(c
M

)
r Q2

o
r

R
C

P
o

w
er

(%
)

P
o

si
ti

o
n

(c
M

)
r Q2

o
r

R
C

T
ru

e
v

al
u
e

–
1

0
0

.0
0

0
.3

5
7

1
–

3
0

0
.0

0
0

.7
1
4

3
–

5
0

0
.0

0
1

.0
7
1

4
–

0
.7

0
0

0

V
ar

ia
n

ce
co

m
p

o
n

en
t

an
al

y
si

s
6

.0
1

0
4

.0
8

(6
.3

9
)

2
.5

1
0

9
(2

.0
8

4
6

)
2

1
.5

2
9

9
.8

4
(4

.4
6

)
2

.4
8
8

5
(1

.6
9

8
5

)
4

2
.0

4
9

9
.8

5
(2

.6
7

)
2

.4
7
7

8
(1

.8
0

7
1

)
–

0
.7

8
3

9
(0

.0
9

0
4

)

0
.7

5
5

5
(0

.0
8

8
4

)

0
.7

5
8

1
(0

.0
9

3
1

)

4
1

a

H
E

re
g

re
ss

io
n

8
6

.0
9

9
.5

9
(1

2
.3

0
)

1
.5

4
5

0
(0

.6
9

4
8

)
9

0
.5

3
0

0
.8

8
(1

1
.0

2
)

1
.7

4
0

8
(0

.7
4

2
0

)
9

8
.0

4
9

9
.5

9
(8

.2
2

)
2

.1
1
9

2
(0

.9
1

1
2

)
1

4
.2

3
5

2
(1

.4
5

9
1

)

1
4

.2
4

4
9

(1
.4

9
6
3

)

1
4

.3
6

6
8

(1
.8

2
2
3

)

0
.9

9
7

6
(0

.0
0

2
1

)

0
.9

9
6

9
(0

.0
0

2
6

)

0
.9

9
5

6
(0

.0
0

3
1

)

1
4

.9
0

M
Q

H
E

re
g

re
ss

io
n

(t
ra

it
p

ro
d

u
ct

)

3
9

.0
1

0
0

.2
6

(7
.4

8
)

0
.8

4
5

2
(0

.4
5

3
0

)
5

9
.0

2
9

8
.0

7
(5

.0
8

)
1

.2
2
9

1
(0

.9
4

3
8

)
8

0
.0

5
0

0
.1

9
(2

.0
9

)
1

.6
5
1

6
(1

.0
4

2
9

)
-

0
.2

0
6

4
(0

.1
.3

8
)

0
.9

8
9

9
(0

.0
1

1
6

)
5

.0
6

r
Q2

v
ar

ia
n

ce
ex

p
la

in
ed

b
y

Q
T

L
.

R
C

re
g
re

ss
io

n
co

ef
fi

ci
en

t
a

T
h

e
n

u
m

b
er

o
f

fa
ls

e
Q

T
L

id
en

ti
fi

ed
in

2
0

0
re

p
li

ca
te

s

688 Theor Appl Genet (2008) 117:683–690

123



method uses a Bayesian analysis, McClurg et al. (2007) an

analysis of variance, and the remainder a VCA. Moreover,

the targeted populations differ. In the case of Crepieux

et al.’s (2005) analysis, this is a set of F6 lines derived from

multiple crosses, while the rest consider a set of inbred

lines.

A key issue for the detection of QTL in natural

populations is to minimize the occurrence of false posi-

tives. In this article, several approaches have been

adopted to this end. First, a multi-QTL model is used to

reduce the FPR (Zhang 2006). Second, the PML method

is designed to shrink the estimates towards zero by

introducing a new prior on the variance of regression

coefficient, so the FPR is low (Zhang and Xu 2005; He

and Zhang 2008). Third, sample size m = n1(n1 - 1)/2 is

so large that the size of FPR can be reduced as well.

Finally, the sign of the regression coefficients becomes

available to discriminate between true and false QTL,

especially in the real data analysis and in the situation of

large pedigree (more than 1,000 lines). To confirm the

result, an accessional simulation was performed as

described in the second simulation experiment except

that a new pedigree randomly simulated and consisted of

1,000 inbred lines (non-founders) was fixed. The simu-

lation showed that the FPR was 4.28% for the new

method and 11.13% for the HE regression at the same

QTL detection power level (100%) while the false QTL

that is distinguishable from the sign of the estimates of

the regression coefficients were eliminated. Therefore,

the elimination of false QTL has a significant positive

effect on reducing the FPR.

Is the number of markers in the new method limited?

It is preferable to gather more samples or reduce the

number of effects considered in the model (Zhang and

Xu 2005; He and Zhang 2008). In Zhang and Xu (2005),

the PML method can handle a model with a number of

effects ten times larger than the sample size. Obviously,

it is no problem to simultaneously include all markers

across the entire genome. As for the convergence in the

estimation of the parameters that most of them are zero,

it has been confirmed in Zhang and Xu (2005) and

He and Zhang (2008). Therefore, the new method is

suitable to the genome-wide analysis and candidate gene

analysis.
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Appendix A: Variance component analysis approach

The phenotypic values (y) of the inbred lines may be

described by the following mixed model

y ¼ Xbþ ZuþWvþ e ð12Þ

where y ¼ yj

� �
n1�1

; u ¼ fukgn0�1 and v ¼ fvkgn0�1 are

vectors for the QTL and polygenic effects of all founder

lines, respectively; X is an incidence matrix for the fixed

(non-genetic) effects, b is a vector of the fixed effects; and

e ¼ ej

� �
n1�1

are the residual errors with an assumed Nð0; r2Þ
distribution. The remaining symbols are defined as follows:

Z ¼ zj

� �
n0�1

; zj is an incidence matrix for the QTL effects

and defined as a 1 9 n0 vector with all but one element zero.

The non-zero element is the value for unity, which occurs at

the position corresponding to the founder, whose allele has

been transmitted to the jth line. W ¼ wj

� �
n0�1

;wj is an

incidence matrix for the polygenic effects and defined as a

1 9 n0 vector with the kth element the probability that

the kth founder allele has been passed to the jth line.

A genome scan approach is taken to search for QTL

linearly along the genome. To test H0 : r2
u ¼ 0 at each

putative position, we run the program twice, one to obtain

the likelihood value under the full model,

L1 ¼�
1

2
ln jV̂j þ ln jXTV̂

�1
Xj þ r̂TV̂

�1
r̂þ ðn� hÞ lnð2pÞ

h i

ð13Þ

where V̂¼Pur̂2
uþPvr̂2

vþIr̂2; r̂¼ y�XðXTV̂
�1

XÞ�XT

V̂
�1

y; ru
2 and rv

2 are the variances of the QTL and the

polygene, respectively; Pu ¼ EðZZTÞ and Pv ¼ EðWWTÞ
are called the IBD and additive relationship matrices for

the QTL and polygenes, respectively; and h is the rank of X

and the other to obtain the likelihood value under the

reduced model,

L0¼�
1

2
ln jV̂0jþ ln jXTV̂

�1

0 Xjþ r̂T
0 V̂
�1

0 r̂0þðn�pÞ lnð2pÞ
h i

ð14Þ

where V̂0¼Pvr̂2
vþ Ir̂2 and r̂0¼ y�XðXTV̂

�1

0 XÞ�XT

V̂
�1

0 y: The likelihood ratio test statistic is defined as

k ¼ �2ðL0 � L1Þ; ð15Þ

and is subsequently compared to a critical value for dec-

laration of statistical significance.

Appendix B: IBD matrix of QTL and additive

relationship matrix

The notations here are same as those in Appendix A. Let m

and f be the male and female lines from which line j is

derived, and let lm, lf, and lj be the labels for the two
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parents and their recombinant inbred line j for j = 1,…, n.

If j is one of founders, say the kth founder, then lj = k for

k = 1,…, n0. If j is not a founder, the parental lines of j

must be known. Thus lj takes lm or lf but not both. The

recurrent relationship can be described by

lj ¼ zjlm þ ð1� zjÞlf ð16Þ

where zj is an indicator variable defined as

zj ¼
1 if j carries the allele from the male parent;

0 if j carries the allele from the female parent:

(

ð17Þ

The value of zj can be sampled from a Bernoulli

distribution with probability pðzj ¼ 1jMÞ: With marker

information (M), the pðzj ¼ 1jMÞ can be calculated using

multi-point method. These sampled labels are used to

reconstruct the Z matrix and thus the IBD matrix. The

expected IBD matrix is then approximated by repeated

simulations using

Pu � N�1
XN

i¼1

ZðiÞZðiÞT ð18Þ

where N is the total number of repeated simulations and

ZðiÞ is the simulated Z matrix in the ith replicate.

The additive relationship matrix for polygene Pvð Þ is

obtained similarly, under the situation of pðzj ¼ 1Þ ¼
pðzj ¼ 0Þ ¼ 0:5; except that the simulation does not depend

on marker information.
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